Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
3.
Vascul Pharmacol ; 145: 106999, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852225

ABSTRACT

Inflammatory response following SARS-CoV-2 infection results in substantial increase of amounts of intravascular pro-coagulant extracellular vesicles (EVs) expressing tissue factor (CD142) on their surface. CD142-EV turned out to be useful as diagnostic biomarker in COVID-19 patients. Here we aimed at studying the prognostic capacity of CD142-EV in SARS-CoV-2 infection. Expression of CD142-EV was evaluated in 261 subjects admitted to hospital for pneumonia and with a positive molecular test for SARS-CoV-2. The study population consisted of a discovery cohort of selected patients (n = 60) and an independent validation cohort including unselected consecutive enrolled patients (n = 201). CD142-EV levels were correlated with post-hospitalization course of the disease and compared to the clinically available 4C Mortality Score as referral. CD142-EV showed a reliable performance to predict patient prognosis in the discovery cohort (AUC = 0.906) with an accuracy of 81.7%, that was confirmed in the validation cohort (AUC = 0.736). Kaplan-Meier curves highlighted a high discrimination power in unselected subjects with CD142-EV being able to stratify the majority of patients according to their prognosis. We obtained a comparable accuracy, being not inferior in terms of prediction of patients' prognosis and risk of mortality, with 4C Mortality Score. The expression of surface vesicular CD142 and its reliability as prognostic marker was technically validated using different immunocapture strategies and assays. The detection of CD142 on EV surface gains considerable interest as risk stratification tool to support clinical decision making in COVID-19.


Subject(s)
COVID-19 , Extracellular Vesicles , Biomarkers/metabolism , COVID-19/diagnosis , Extracellular Vesicles/metabolism , Humans , Reproducibility of Results , Risk Assessment/methods , SARS-CoV-2 , Thromboplastin/metabolism
4.
Mol Ther Methods Clin Dev ; 25: 41-42, 2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1730017
5.
EBioMedicine ; 67: 103369, 2021 May.
Article in English | MEDLINE | ID: covidwho-1220821

ABSTRACT

BACKGROUND: Coronavirus-2 (SARS-CoV-2) infection causes an acute respiratory syndrome accompanied by multi-organ damage that implicates a prothrombotic state leading to widespread microvascular clots. The causes of such coagulation abnormalities are unknown. The receptor tissue factor, also known as CD142, is often associated with cell-released extracellular vesicles (EV). In this study, we aimed to characterize surface antigens profile of circulating EV in COVID-19 patients and their potential implication as procoagulant agents. METHODS: We analyzed serum-derived EV from 67 participants who underwent nasopharyngeal swabs molecular test for suspected SARS-CoV-2 infection (34 positives and 33 negatives) and from 16 healthy controls (HC), as referral. A sub-analysis was performed on subjects who developed pneumonia (n = 28). Serum-derived EV were characterized for their surface antigen profile and tested for their procoagulant activity. A validation experiment was performed pre-treating EV with anti-CD142 antibody or with recombinant FVIIa. Serum TNF-α levels were measured by ELISA. FINDINGS: Profiling of EV antigens revealed a surface marker signature that defines circulating EV in COVID-19. A combination of seven surface molecules (CD49e, CD209, CD86, CD133/1, CD69, CD142, and CD20) clustered COVID (+) versus COVID (-) patients and HC. CD142 showed the highest discriminating performance at both multivariate models and ROC curve analysis. Noteworthy, we found that CD142 exposed onto surface of EV was biologically active. CD142 activity was higher in COVID (+) patients and correlated with TNF-α serum levels. INTERPRETATION: In SARS-CoV-2 infection the systemic inflammatory response results in cell-release of substantial amounts of procoagulant EV that may act as clotting initiation agents, contributing to disease severity. FUNDING: Cardiocentro Ticino Institute, Ente ospedaliero Cantonale, Lugano-Switzerland.


Subject(s)
COVID-19/complications , Extracellular Vesicles/immunology , Thromboplastin/metabolism , Thrombosis/blood , Adult , Aged , Aged, 80 and over , Antigens, Surface/analysis , Biomarkers/analysis , COVID-19/blood , COVID-19/immunology , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Switzerland , Thrombosis/etiology , Thrombosis/immunology , Tumor Necrosis Factor-alpha/blood
SELECTION OF CITATIONS
SEARCH DETAIL